Learning to Match

نویسندگان

  • Philip Ekman
  • Sebastian Bellevik
  • Christos Dimitrakakis
  • Aristide C. Y. Tossou
چکیده

A trend that has been observed over the recent years is that many companies, especially so‰ware companies, are outsourcing work to previously unknown parties [11]. Instead of outsourcing tasks to known, or previously used, firms, they obtain workers through online platforms such as Amazon’s Mechanical Turk [2]. Œis type of outsourcing is sometimes referred to as crowdsourcing. On the market today there are several crowdsourcing platforms that outsource simpler tasks which can be completed during a short period of time and without a specific set of high level skills [4].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

TBM Tunneling Construction Time with Respect to Learning Phase Period and Normal Phase Period

In every tunnel boring machine (TBM) tunneling project, there is an initial low production phase so-called the Learning Phase Period (LPP), in which low utilization is experienced and the operational parameters are adjusted to match the working conditions. LPP can be crucial in scheduling and evaluating the final project time and cost, especially for short tunnels for which it may constitute a ...

متن کامل

Damage identification of structures using second-order approximation of Neumann series expansion

In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...

متن کامل

Exploiting Best-Match Equations for Efficient Reinforcement Learning

This article presents and evaluates best-match learning, a new approach to reinforcement learning that trades off the sample efficiency of model-based methods with the space efficiency of modelfree methods. Best-match learning works by approximating the solution to a set of best-match equations, which combine a sparse model with a model-free Q-value function constructed from samples not used by...

متن کامل

In Proceedings of the Thirteenth National Conference on Arti cial

Many learning systems suuer from the utility problem; that is, that time after learning is greater than time before learning. Discovering how to assure that learned knowledge will in fact speed up system performance has been a focus of research in explanation-based learning (EBL). One way to analyze the utility problem is by examining the diierences between the match process (match search) of t...

متن کامل

Learning Efficient Rules by Maintaining the Explanation Structure

Many learning systems suffer from the utility problem; that is, that time after learning is greater than time before learning. Discovering how to assure that learned knowledge will in fact speed up system performance has been a focus of research in explanationbased learning (EBL). One way to analyze the utility problem is by examining the differences between the match process (match search) of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.09678  شماره 

صفحات  -

تاریخ انتشار 2017